NPS-C5-95-004

NAVAL POSTGRADUATE SCHOOL
Monterey, California

UNIFORM REPRESENTATION OF DATA
TYPES IN POLYMORPHIC C

by
Carl M. Pederson, Jr., CDR, USN

October 1995

Approved for public release; distribution is unlimited

Prepared for: Naval Postgraduate School
Monterey, CA 93943

19951204 017

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral M. J. Evans Richard Elster
Superintendent Provost

This report was prepared for a directed study course (CS 4800) titled Advanced Topics in
Compilation.

Reproduction of all or part of this report is authorized.

p—

D -

CDR Carl M. Pederson, Jr., USN

Reviewed by: Released by:

' Voo 7
DENNIS VOLiSANO ' PAUL J. MARTO
Assistant Professor Dean of Research

of Computer Science

W Accesion For

TED LEWIS NTIS CRA&I
Chairman '
Department of Computer Science

slalc-4ll

Lt Sl T TS R T
A R R

Avzilobililty Coaes

_ | Avail andfor
Dist Special

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

O

REPORT DOCUMENTATION PAGE

; 7a. REPORT SECURITY CLASSIFICATION JNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;
distribution is unlimited

Y 72 PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

NPSCS-95 -004
& NAME OF EERFORMNG ORGANTZATION 65, GFFICE SYMBOL | 72, NAME OF MONTTORING ORGANIZATION
omputer Science Dept. (if applicable)
| Naval Postgraduate School CS

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Codes)

Monterey, CA 93943

8a. NAME OF EI_L'JBJ"?ING/SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZA (if applicable)
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRA PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Securfty Classification) . .
Uniform Representation of Data Types in Polymorphic C.

DR Cart M. Pederson Jr., USN

B 735 TIME COVERED 17_DATE OF REPORT (Year, Month, Day) | 15. PAGE COUNT

October 1995

10/95

FroM_7/95 1o
76 SUPPLEMENTARY NOTATION

18. SUBJECT TERMS (Continue on revarse if necessary and identify by block number)

[COSAT! CODES polymorphism, C programming language

GROUP SUB-GROUP

19. ABSTRACT Continue on reverse if necessary and identify by block number) . . .
A polymorphic dialect of C, calledagolymorphlc C, has been proposed. The dialect retains the flexibility of C while

incorporating ML-style polymorphism and rigorous type reconstruction. Supporting polymorphism in a program-
ming language often requires sacrificing either speed, space, or both in the executable code. The preferred implemen-
tation of Polymorphic C would preserve the speed and space efficiency of C. This paper demonstrates an approach
for generating efficient executable code for Polymorphic C based on a variation of uniform representation and using
byte-wise manipulation.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 27, ABSTRACT SECURITY CLASSIFICATION
[X UNCLASSIFIED/UNLIMITED [] SAME ASRPT. [DTIC USERS | UNCLASSIFIED

[T R U AT il e
DO

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

~ Uniform Representation of Data Types in
Polymorphic C

Abstract

A polymorphic dialect of C, called Polymorphic C, has been proposed. The dialect
retains the flexibility of C while incorporating ML-style polymorphism and rigorous type
reconstruction. Supporting polymorphism in a programming language often requires
sacrificing either speed, space, or both in the executable code. The preferred
implementation of Polymorphic C would preserve the speed and space efficiency of C.
This paper demonstrates an approach for generating efficient executable code for |
Polymorphic C based on a variation of uniform representation and using byte-wise

manipulation.

1. Introduction

Providing the widely used imperative language C with polymorphism could
dramatically increase the reuse potential of C programs. A polymorphic dialect of C,
called Polymorphic C (abbreviated Poly C in this paper) has been proposed by Smith and
Volpano [SmV095]. The dialect retains the flexibility of C while incorporating ML-style
polymorphsim and rigorous type reconstruction. The acceptance of the dialect requires an
efficient implementation. The compiled code must come close to the speed and space
efficiency of C.

Incorporating polymorphism in a programming language is generally incompatibie
with fast execution speed and low space overhead. Additionally polymorphism introduces
various problems into the process of generating intermediate code during compilation.
Many implementation techniques addressing these problems have been proposed for
functional languages [MDCB91], [Ler92], [ShAp95],.[Thi95]. These approaches could
be implemented in a compiler for Poly C, but not without adversely affecting executable
code. This is because function calls are used to perform explicit coercion between

monomorphic types and a uniform representation used by polymorphic functions (wrap

and unwrap). This paper describes an implementation approach for Poly C that preserves
the speed efficiency with only a modest storage penalty.

The proposed implementation employs C code as the intermediate language. A
monomorphic program is translated directly to C code. For polymorphic functions, a
uniform and strict calling convention is used to allow different data types to be passed and
returned from polymorphic functions. The proposed compilation approach is possible in
Poly C because of its close correspon.dence with Kernighan and Ritchie C and its robust
type system. The type inference system of Poly C can be used to determine which
functions are polymorphic. Poly C’s type system assures type correctness of a Poly C
program. Intermediate code generation can be based on type information determined
dun'hg the type checking process.

The specific assumptions necessary for the approach proposed in this paper are:

e the compiler can determine if a function is monomorphic or polymorphic,

¢ the compiler can ascertain information required by each polymorphic function
(array size, element size, pointer arithmetic to apply, etc.) and is able to supply
the information.

The details of the approach are described in the next section. Both the concepts
and benefits of the approach are presented. In Section 3, examples are used to

demonstrate the technique.

2. Description of Approach

There are four basic kinds of functions in an imperative language such as Poly C:
e monomorphic applicative -- a monomorphic function executed for its value,

¢ monomorphic imperative -- a monomorphic function executed for its effect and
perhaps a value,

¢ polymorphic applicative -- a polymorphic function executed for its value,

¢ polymorphic imperative -- a polymorphic ﬁinction executed for its effect and
perhaps a value.

The first two kinds of functions when written in Poly C can be translated directly into C

code. Polymorphic functions must be handled differently to allow the same code to be

executed for all data types and produce correct results. This paper concentrates on
intermediate code generation for the two kinds of polymorphic functions. To obtain
executable code, each of the two kinds of polymorphic functions must be handled
differently during compilation.

To correctly generate intermediate code from a Poly C program, the compiler must
first determine the kind of function being translated. This is possible with information
produced by Poly C’s type inference éystem. Specifically,

¢ If the return type of the function is quantified (non-specialized) then the
function is polymorphic.

¢ If the return type of the function is specialized then the function is
monomorphic. ‘

e If the function has no return type then it is executed for its effect.

A standard convention is always used to pass data to and from a polymorphic
function. We use a calling convention employing a uniform representation. The types of
the called function’s actual parameters are ignored. The same number of bytes are
allocated on the function’s activation stack for each parameter regardless of its type.' In
the context of this paper, uniform representation refers to the notion that parameters
occupy a uniform size on a polymorphic function’s stack.

For example consider the polymorphic identity function, called id, written in Poly

C and the associated intermediate code present below in Figure 1.

Poly C Program Intermediate Code
letvar one := long poly_id(long x) {return x;} // function id
letid = Ax.x in //polymorphic function id
in id(1) int main()

{
int one = poly_id(1);
return 0;

}

Figure 1. Polymorphic Identity Function.

! The calling convention of typical C compilers passes arguments to functions on the stack and passes a return value
from the function in a specific register(s).

A default size of four bytes (type long) is used in the intermediate code for id’s argument
and return-value. The actual default size chosen for the implementation depends of the
target architecture. In this paper, type long is used in the intermediate code for all
examples of polymorphic functions. After compilation, the C program executes correctly
for all data types currently supported in Poly C. Test results of the associated
intermediate code for the Poly C program of Figure 1 are given in Appendix A.

As shown above, when a pol);morphic function is executed for its value, an
implementation using a calling convention employing default size for formal parameters on
the activation stack is sufficient to produce correct results. However if a polymorphic
function is executed for its effect, a different approach and additional information is
required. The intermediate code generated performs a byte-by-byte manipulation of the
effected store. To do this correctly the size (number of bytes) of actual parameters must
be passed to the function. In this situation the compiler must be able to determine the size
of the data type being passed to the function. The assignment function presented below in

Figure 2 is an example of byte-by-byte copy.

Poly C Program Intermediate Code
let assign = A 1_side, r_side.(*]_side :=r_side) void poly_assign(char *1_side, char *r_side, int
in ... size)
{
inti=0;

for(; i < size ; i++)
*(I_side + i) = *(r_side + i);

}

Figure 2. A Polymorphic Function Executed for its Effect.

The intermediate code uses a type char pointer to facilitate byte-wise manipulation. The
for loop copies each byte of actual parameter r_side to the appropriate byte of actual
parameter /_side. The loop exit condition is based on the size of data type being
manipulated. Test results of the asspciated intermediate code for the Poly C program of

Figure 2 are given in Appendix B.

Another situation that occurs with polymorphic functions is that a specialized
function may need to be passed to a polymorphic function. As in the case of a
polymorphic sort function, the comparison function specific to the data types being sorted,
must be supplied.

As currently described, only three data types are of concern for polymorphic
function calls in Poly C: integers, poipters, and arrays. However array names function as
constant pointers as in C, so really only two data types must be considered. In this paper
various data types are used in the examples. The types are chosen to provide a range of
store size and interpretation to sufficiently demonstrate the proposed implementation
approach.

~ The primary advantage of this approach is that only polymorphic functions are
affected by the proposed implementation. The impact on speed and storage of a Poly C
program is minimal. Most of a Poly C’s data type representation is unrestricted allowing
storage optimization for all data values except parameters and return values of
polymorphic functions. The only significant slow down potentially occurs when byte-wise

manipulation is used in polymorphic functions executed for effect.

3. Demonstration of Approach

This section demonstrates the viability of implementing Poly C using the ideas
presented above (default size occupied on the stack and byte-wise copy). Various
conditions related to polymorphic functions that may occur in a Poly C program are
explored. These conditions involve parameter passing combinations, functions executed

for their value and functions executed for their effect, and continuation combinations®.

2 Chained function calls .such as f1(f2(f3(x))).

In [MDCB91] four combinations of parameter passing encountered in
polymorphism are discussed.

1. A concrete (specialized) actual parameter passed to a concrete formal

parameter.

2. A concrete actual parameter passed to a quantified (non-specialized) formal

parameter.

3. A quantified actual parameter passed to a concrete formal parameter.

4. A quantified actual parameter passed to a quantified formal parameter.

For the approach presented in this paper, these cases are not of primary interest since in
Poly C all actual parameters are concrete’.

A parameter passing combination that is of interest is the situation where a
function is passed as a parameter to a polymorphic function. In the example given below
in Figure 3 a polymorphic function called apply is passed two parameters, a data value
and a function. The actual parameter for the function is passed via a pointer. Test results

of the associated intermediate code for the Poly C program of Figure 3 are given in

Appendix C.
Poly C Program Intermediate Code
letvar succ_of_x = long poly_apply(long x, void (*fun)()) { return fun(x); }
let apply = Ax,Af.fx in int int_succ(int a) {retum a + 1;}
a letint_succ =Aaa+1 int main()
in apply(2, int_succ) {
intx=2;
int succ_of_x;

succ_of_x = poly_apply(x, int_succ);

return 0;

}

Figure 3. A Function Passed as a Parameter to a Polymorphic Function.

The examples given in Figure 1 and Figure 3 involved functions executed for their

value. When a function is executed for its effect a byfe-wise copy is used to change the

*A polymorphic function passed as an actual parameter is concrete and has type pointer.

content of the appropriate memory locations. In this situation, the size of the data value
being manipulated must be passed to the polymorphic function. This was demonstrated in
the assignment example in the previous section (Figure 2).

The continuation of function calls (chaining of functions) can occur in four
combinations.

1. A monomorphic function calls a monomorphic function.

2. A monomorphic function calls a polymorphic function.

3. A polymorphic function calls a monomorphic function.

4. A polymorphic function calls a polymorphic function.
The first calling combination does not involve any polymorphic functions and is not
demonstrated. Also combination number three, a polymorphic function (apply) calls a
monomorphic function (int_succ) was demonstrated above in Figure 3. Examples for
each of the other two combinations are given below in Figure 4 and Figure 5. The Poly C

program in Figure 5 is from [SmV095]. Test results of the associated intermediate code

for the Poly C programs of Figure 4 and Figure 5 are given in Appendix D and

Appendix E respectively.
Poly C Program Intermediate Code
letvar a= 1234 in // polymorphic id function
letvar copy_of_a=0in long poly_id(long x) {return x;}
letid = Ax.x in
let int_id = Ax.id(x) in // integer id function calls poly_id
copy_of_a := int_id(a) int int_id(int x) {return poly_id(x);}
int main()
{
inta = 1234;

int copy_of_a=0;

copy_of_a=int_id(a);
return 0;

}

Figure‘4. A Monomorphic Function Callsa Polymorphic Function.

Poly C Program

Intermediate Code

let swap = Ax,y.Jetvar t := *x;
in *x :=*y; *y:=t
in
let reverse = Aa, n.letvar i ;=0 in
whilei<n-1-i do
swap(a+i,a+n-1-1i)
i=i+1

// function to swap two elements
void poly_swap(char* x, char* y, int size)
{
char temp;
int i;
for(i = 0; i < size; i++) {
temp = *(x + i);
*(x+ i) = *(y +i);
*(y +1) = temp;
}
}

//function to reverse the elements of an array
void poly_rev(char* x, int size, int n)
{

inti=0;

whilei<n-1-1i) {
poly_swap(x + (size * i), x + (size * (n - 1 - 1)),
size);
i++;
}
}

Figure 5. A Polymorphic Function Calls a Polymorphic Function.

4, Conclusions

This paper demonstrated that intermediate C code can be used to efficiently

implement polymorphism in Poly C.

There is still much to be done related to the approach presented in this paper.

e A translation scheme must be developed.

¢ Comparing the efficiency of this approach with other approaches.

e The method will need to be extended to more complicated data types as they

are include in Poly C.

Although a translation scheme was not provided, the examples presented in

Section 3 can serve as a guide for the development of formal methods for generating

intermediate code. Various implementation methods for Poly C ({[Bon95], the approach

P el

presented in this paper, etc.) should be benchmarked for speed and space efficiency and
compared with each other. From the perspective of intermediate code generation,
extending Poly C to include more complicated data types does not appear to be an issue.
The results of the examples presented in the appendices demonstrate how pointers can be
used to handle other data types such as floats and structures.

One issue is the warnings generated by the compiler when the intermediate code is
compiled. The type checking done b;/ the C compiler when generating the executable
program gives type warnings that can be ignored for the most part. Translating directly to

assembly code would alleviate the problem.

10

s\Dm\lO\UlAwN»-A

el el ol el
O 00 IO W B LR e

APPENDIX A

Polymorphic Identity Function
Executable Code

#include <stdio.h>
long poly_id(long x) {return x;}

int main()

{
inta = 1234;
long b= 7777777,
int* ptr_a = &a;
int* c;

printf("\n *** testing poly_id ******\n\n");
printf(" %d", poly_id(a)); printf("\n");
printf(" %1d", pely_id(b)); printf("\n");

¢ = poly_id(ptr_a);

printf(" %d", *c); printf("\n");

return 0;

}
Test Results

*% esting poly_id **+we
1234

7777771
1234

Warnin

line number: (15) : warning: 'argument’ ; different levels of indirection

line number: (15) : warning: 'poly_id' : different types for formal and actual parameter 1
line number: (15) : warning: '=' : different levels of indirection _ .
line number: (15) : warning: conversion of near pointer to long integer

11

S\OOO\IO\UIJ-*-U)NH

-h-P-hAMMMMWWWWMMNNNNNﬁNNNN#.—»—t—-r—-i—it-—,—lb-
PR, OOVXNARANHE W= OO WK e OO0~ BN

APPENDIX B

Polymorphic Assignment Function

Executable Code

// assignment function for Poly C
#include <stdio.h>

/ftest data
intx =3;
inty =44;

intxl=1;
int x77 =177,

int *ptr_x1 = &x1;
int *ptr_x77 = &x77;
int m; // used for displaying contents of pointer

intarr_1[3] = {11, 12,13};
int arr_2[3] = {21, 22, 23};

// polymorphic assignment function

// copies bytes from first parameter (1_side) to

// second parameter (r_side)

void poly_assign(char *I_side, char *r_side, int size)
{

inti=0;

printf("™\n poly_assign called.\n");
printf(" Size of 1_side is "); printf("%d", size); printf("\n");

for(; i < size ; i++)
*(1_side + i) = *(r_side + i);

}

// displays the elements of an array
void display_int_arr(int *p, const int num_of thmgs)

int main()
{
// testing with an integer
printf('"\n ***** Testing assignment with an integer *****\n");
printf("\n The value of x is "); printf("%d ", x);
printf(" The value of y is "); printf("%d ", y); printf("™\n");

poly_assign(&x, &y, sizeof(x));

13

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

printf('"\n The value of x is "); printf("%d ", x);
printf(" The value of y is "); printf("%d ", y); printf("\n");

// testing with a pointer

printf("™\n ***** Testing assignment with a pointer *****n");
printf("\n The value of x1 is "); printf("%d ", x1);

printf('"\n The value of x77 is "); printf("%d ", x77);
printf("™\n");

printf("\n The value of ptr_x1 is "); printf("%d ", ptr_x1);

m = *ptr_x1;

printf("™n The value pointed to by prt_x1 is "); printf(" %d", m);
printf("\n The value of ptr_x77 is "); printf("%d ", ptr_x77);
printf(™\n");

poly_assign(&ptr_x1, &ptr_x77, sizeof(ptr_x1));
printf("\n The value of ptr_x1 is "); printf("%d ", ptr_x1);

m = *ptr_x1;

printf("\n The value pointed to by prt_x1 is "); printf(" %d", m);
printf("™n The value of ptr_x77 is "); printf("%d ", ptr_x77);
printf("\n");

printf("\n The value of x1 is "); printf("%d ", x1);

printf("™\n The value of x77 is "); printf("%d ", x77); printf("\n");

// testing with an array

printf("\n ***** Testing assignment with an array *****\n");
printf("™\n The elements in array arr_1 are ");
display_int_arr(arr_1, 3);

printf("\n The elements in array arr_2 are ");
display_int_arr(arr_2, 3); printf("\n");

poly_assign(&arr_1, &arr_2, sizeof(arr_1));

printf("\n The elements in array arr_1 are ");
display_int_arr(arr_1, 3);

printf('"\n The elements in array arr_2 are ");
display_int_arr(arr_2, 3); printf("\n");

return O;

}

void display_int_arr(int *p, const int num_of_things)
{
inti=0;
for(; i < num_of_things; i++)
printf("%d ", *(p + i));
}

14

Test Results

kk Testing assignment with an integer *+*
The value of x is 3 The value of y is 44

poly_assign called.
Size of 1_side is 2

The value of x is 44 The value of y is 44

xkx Testing assignment with a pointer *****
The value of x1is 1
The value of x77 is 77

The value of ptr_x1 is 20
The value pointed to by prt_x1is 1
The value of ptr_x77 is 22

poly_assign called.
Size of I_side is 2

The value of ptr_x1 is 22
~ The value pointed to by prt_x1is 77
The value of ptr_x77 is 22

The value of x1is 1
The value of x77 is 77

" *¥xk* Testing assignment with an array ****
The elements in array arr_1 are 11 12 13
The elements in array arr_2 are 21 22 23

poly_assign called.
Size of 1_side is 6

The elements in array arr_1 are 21 22 23
The elements in array arr_2 are 21 22 23

Warnings

line number: (43) : warning: 'argument' : indirection to different types

line number: (43) : warning: 'argument’ : indirection to different types

line number: (60) : warning: 'argument’ : different levels of indirection ,

line number: (60) : warning: "poly_assign' : different types for formal and actual parameter 1
line number: (60) : wamning: 'argument’ : different levels of indirection

line number: (60) : warning: "poly_assign' : different types for formal and actual parameter 2
line number: (78) : warning: 'argument’ : different levels of indirection

line number: (78) : warning: 'poly_assign' : different types for formal and actual parameter 1
line number: (78) : wamning: 'argument’ : different levels of indirection

line number: (78) : warning: 'poly_assign' ; different types for formal and actual parameter 2

16

O 00~ L B W

APPENDIX C

Monomorphic Function Passed as a Parameter to a
Polymorphic Function

Executable Code

// Test of polymorphic apply function that calls
// a monomorphic function.

#include <stdio.h>

float greg; // used for returning an address from function call
float* p_greg = &greg;

// polymorphic apply function v
long poly_apply(long x, void (*fun)()) {fun(x);}

// integer successor function
int int_succ(int a) {return a + 1;}

// long integer successor function
long long_succ(long a) { return a + 1;}

// float function
float* float_succ(float* a) // pointers used for float
{ .
greg = *a+0.1;
return p_greg;
}

int main()

{
{/ test data
intx =2;
long L = 345678;
float f = 1.23F;
float f_res = 4.4F;
float* f_ptr = &f_res;

// a call to an integer successor function

printf("***** Testing call to a int_succ *****");printf("\n");
printf("\n the value of x is ");

printf("%d", x); printf("\n");

17

40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

printf(" the value of poly_apply(x, int_succ) is ");
printf("%d", poly_apply(x, int_succ)); printf("\n\n");

// a call to a long integer successor function

printf("***** Testing call to a long_succ *****");printf("\n");
printf("\n the value of L is ");

printf("%1d", L); printf("\n");

printf(" the value of poly_apply(L, long_succ) is ");
printf("%ld", poly_apply(L, long_succ)); printf("\n\n");

// a call to a float successor function
printf("***** Testing call to a float_succ *****");printf("\n");
printf("™\n the value of fis ");
printf("%f",), printf("\n");
printf(" the value of poly_apply(f, float_succ)"
"\n [incremented by 0.1] is ");
f_ptr = poly_apply(&f, float_succ);
f_res = *f_p;
printf("%f", f_res); printf("\n\n");

return 0;

}
Test Results

xxk Testing call to a int_succ *****
the value of x is 2
the value of poly_apply(x, int_succ) is 3

*RAK Testing‘call t0 a long_succ *****
the value of L is 345678
the value of poly_apply(L, long_succ) is 345679

*x*xx Testing call to a float_succ *****
the value of f is 1.230000

the value of poly_apply(f, float_succ)
[incremented by 0.1} is 1.330000

Warmnings

line number: (11) : warning: 'poly_apply' : no return value

line number: (22) : warning: conversion between different floating-point types

line number: (56) : wamning: 'argument’ : different levels of indirection

line number: (56) : warning: 'poly_apply' : different types for formal and actual parameter 1
line number: (56) : warning: 'argument’ : different levels of indirection

line number: (56) : warning: 'poly_apply' : different types for formal and actual parameter 2
line number: (56) : warning: '=': different levels of indirection

line number: (56) : warning: conversion of near pointer to long integer

18

— .
OOV IO B WN—

BB W LWL LWL W W NNNN N NN bk ek b
»-—O\ooo\)oxu-Awwh-O\ooo\lc\mﬁuJNMB\B;‘o:aLnAwN:

A Monomorphic Function Calls a Polymorphic Function

Executable Code

// monomorphic id functions call polymorphic id function

#include <stdio.h>

/*
//poly id using assmbly code
long asm_id(long x)
{
__asm mov ax, [bp+6]
__asm mov dx, [bp+8]

}
*/

// poly id using C code
long poly_id(long x) {return x;}

// monomorphic functions
int int_id(int x)

{

return poly_id(x); // poly_id called
} N
long long_id(long x)
{

return poly_id(x); // poly_id called
}

int* ptr_id(int* x)
{

return poly_id(x); // poly_id called
}

int main()
{
int a = 1234;
long b=77777717;
- int* ptr_a = &a;
int* c;

APPENDIX D

19

42
43

45
46
47
48
49
50

printf("\n *** testing id ******\n\n");
printf(" %d", int_id(a)); printf("\n");
printf(" %1d", long_id(b)); printf("\n");
¢ = ptr_id(ptr_a);

printf(" %d", *c); printf("\n");

return 0;

}

Test Results

%k festing id **kkks
1234

7777777
1234

Warnings

line number: (21): conversion between different integral types

line number: (31): 'argument’ : different levels of indirection

line number: (31): ‘poly_id' : different types for formal and actual parameter 1
line number: (31): return’ : different levels of indirection

line number: (31): conversion of near pointer to long integer

20

O 0~ W bW —

APPENDIX E

A Polymorphic Function calls a Polymorphic Function

Executable Code

// polymorphic reverse function.
#include <stdio.h>

// polymorphic function to swap two elements
void poly_swap(char* x, char* y, int size)
{
char temp;
int i;
for(i = 0; i < size; i++) {
temp = *(x+i);
*(x+) = *(y+i);
*(y+i) = temp;
}
}

// function that reverses the elements of an array
// element size required for indexing the array
void poly_rev(char* x, int size, int n)

{

inti=0;

while(i < n-1-i) {
poly_swap(x+(size*i), x+(size*(n-1-i)), size);
i++;
}
}

int main()
{
intint_arr[4] = {1, 2, 3, 4};
long long_arr[4] = {44444, 55555, 66666,77777};
float float_arr[4] = {1.1F, 2.2F, 3.3F, 4 4F};
inta=10;
intb=11;
intc=12;
intd=13;
int* ptr_arr{4] = { &a, &b, &c, &d};
int i;

21

42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

printf("\n *** testing poly_reverse ******\n\n");

// int_arr
printf(" int_arr prior to reversal ");
forG =0;i<4; i++)

printf("%d ", int_art{i]);
poly_rev(int_arr, sizeof(*int_arr), 4);
printf("\n int_arr after reversal ");
for(i=0;1 < 4; i++)

printf("%d ", int_arr[i]);

/flong_arr
printf("™\n\n long_arr prior to reversal ");
for(i=0; 1< 4; i++)

printf("%I1d ", long_arr(i]);
printf("\n");
poly_rev(long_arr, sizeof(*long_arr), 4);
printf(" long_arr after reversal ");
for(i=0; i < 4; i++)

printf("%Id ", long_arr{i]);

//float_arr

printf("\n\n float_arr prior to reversal ");
fori=0;1<4;i++)
printf("%f ", float_arr[i});
printf("\n");
poly_rev(float_arr, sizeof(*float_arr), 4);
printf(" float_arr after reversal ");
for(i = 0; 1 < 4; i++)
printf(" %f ", float_arr{i]);
printf("\n");

//pointer_arr
printf('"\n\n ptr_arr prior to reversal ");
for(i=0; 1< 4; i++)

printf("%d ", *ptr_arr(i]);
printf("\n");
poly_rev(ptr_arr, sizeof(*ptr_arr), 4);
printf(" ptr_arr after reversal ");
for(i=0;1 < 4; i++)

printf("%d ", *ptr_arr{i]);
printf("\n"); printf("™\n");

return 0;

Test Results

*kk testing poly_reverse *x**x*

int_arr prior to reversal 1234
int_arr after reversal 4321

long_arr prior to reversal 44444 55555 66666 77777
long_arr after reversal 77777 66666 55555 44444

float_arr prior to reversal 1.100000 2.200000 3.300000 4.400000
float_arr after reversal 4.400000 3.300000 2.200000 1.100000

ptr_arr prior to reversal 10 11 12 13
ptr_arr after reversal 13 12 11 10

Warnings

line number: (48): 'argument’ : indirection to different types

line number: (58): indirection to different types

line number: (68): indirection to different types

line number: (79): different levels of indirection -

line number: (79): different types for formal and actual parameter 1

23

24

[(Bon95]

[Ler92]

[MDCB91]

[ShAp95]

[SmVo095]

[Thi9s]

REFERENCES

Bonem, P., Towards an Implementation of Poljmorphic C,
Master’s Thesis, Naval Postgraduate School, Monterey California,
September 1995.

Leroy, S., “Unboxed Obejects and Polymorphic Typing”, Proc. 19th
ACM Symposiun on Principles of Programming Languages, January 1992.

Morrison, R., Dearle, A., Connor, C., and Brown, A., “An Ad Hoc
Approach to the Implementation of Polymorphism”, ACM transactions on
Programming Languages and Systems, Vol. 13, No. 3, July 1991.

Shao, Z, and Appel, A., “A Typed-Based Compiler for Standard ML”,
Proc. 1995 Conf. on Programming Language Design and Implementation,
June 1995.

Smith, G., and Volpano, D., “An ML-style Polymorphic Type System for
C”, submitted for publication, 1995.

Thiemann, P., “Unboxed Values and Polymorphic Typing Revisited”,
Conference Record of ACM FPCA ‘95 Conference on Functional

- Programming Languages and Computer Architecture, June 1995.

25

26

DISTRIBUTION LIST

Defense Technical Information Center

" Cameron Station
Alexandria, VA 22314

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analyses
4401 Ford Avenue
Alexandria, VA 22302-0268

Director of Research Administration
Code 012

Naval Postgraduate School
Monterey, CA 93943

Dr. D. Volpano, Code CS/Vo
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr. G. Smith

School of Computer Science
Florida International University
University Park

Miami, FL 33199

CDR Carl M. Pederson Jr., USN

PSC 78 BOX 346
APO AP 96326-0346

27

2 copies

2 copies

2 copies

1 copy

5 copies

1 copy

1 copy

